TY - JOUR
T1 - Dispersion activity coefficient models. Part 1
T2 - cubic equations of state
AU - Krooshof, Gerard J.P.
AU - Tuinier, Remco
AU - de With, Gijsbertus
PY - 2019/12/1
Y1 - 2019/12/1
N2 - An explicit expression for dispersion in activity coefficient models can be derived from cubic equations of state (cEoS). Here we show that all the two-parameter cEoS deliver a van Laar type of equation. The difference between these equations can be characterized by a single parameter K, which can be computed directly from the cEoS characteristic parameters. The theoretical values for K are always higher than experimental activity coefficient data of alkane mixtures indicate. We show that mixtures of linear and branched alkanes require K=4.13 and K=3.04, respectively, while the lowest theoretical value, K=9, is given by the van der Waals equation. This mismatch in results is caused by the assumptions, which are made in the derivation of the van der Waals equation of state and which remain present in later developed cEoS. One of these is that all molecules are spherical, which leads to the inconsistency that the ratio of the covolume and the van der Waals volume is always 4, while this ratio for linear alkanes decreases rapidly to nearly 2 with increasing chain length. Another assumption is that all molecules experience the same number of external interactions, which neglects the fact that polyatomic molecules have less intermolecular interactions per spherical segment due to presence of covalent bonds and the occurrence of intramolecular interaction. Therefore, the van Laar type of activity coefficient equations are limited in their use as predictive model for dispersion. Perturbed hard-sphere chain equation of state will be discussed in part 2.
AB - An explicit expression for dispersion in activity coefficient models can be derived from cubic equations of state (cEoS). Here we show that all the two-parameter cEoS deliver a van Laar type of equation. The difference between these equations can be characterized by a single parameter K, which can be computed directly from the cEoS characteristic parameters. The theoretical values for K are always higher than experimental activity coefficient data of alkane mixtures indicate. We show that mixtures of linear and branched alkanes require K=4.13 and K=3.04, respectively, while the lowest theoretical value, K=9, is given by the van der Waals equation. This mismatch in results is caused by the assumptions, which are made in the derivation of the van der Waals equation of state and which remain present in later developed cEoS. One of these is that all molecules are spherical, which leads to the inconsistency that the ratio of the covolume and the van der Waals volume is always 4, while this ratio for linear alkanes decreases rapidly to nearly 2 with increasing chain length. Another assumption is that all molecules experience the same number of external interactions, which neglects the fact that polyatomic molecules have less intermolecular interactions per spherical segment due to presence of covalent bonds and the occurrence of intramolecular interaction. Therefore, the van Laar type of activity coefficient equations are limited in their use as predictive model for dispersion. Perturbed hard-sphere chain equation of state will be discussed in part 2.
KW - Activity model
KW - Cubic equation of state
KW - Dispersion
KW - Van Laar
UR - http://www.scopus.com/inward/record.url?scp=85070880802&partnerID=8YFLogxK
U2 - 10.1016/j.fluid.2019.112275
DO - 10.1016/j.fluid.2019.112275
M3 - Article
AN - SCOPUS:85070880802
SN - 0378-3812
VL - 501
JO - Fluid Phase Equilibria
JF - Fluid Phase Equilibria
M1 - 112275
ER -