Direct numerical simulations of premixed turbulent flames with flamelet-generated manifolds

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

Abstract

Direct numerical simulation is a very powerful tool to evaluate the validity of new models and theories for turbulent combustion. In this paper, direct numerical simulations of spherically expanding premixed turbulent flames in the thin reaction zone regime and in the broken reaction zone regime are performed. The flamelet-generated manifold method is used in order to deal with detailed reaction kinetics. The computational results are analyzed by using an extended flame stretch theory. It is investigated whether this theory is able to describe the influence of flame stretch and curvature on the local burning velocity of the flame. It is found that if the full profiles of flame stretch and curvature through the flame front are included in the theory, the local mass burning rate is well predicted. The influence of using a reduced chemistry model is investigated by comparing flamelet simulations with reduced and detailed chemistry. Adding a second dimension to the flamelet-generated manifold increases the accuracy of the reduced model with an order of magnitude.
Original languageEnglish
Title of host publicationProceedings of the European Combustion Meeting : Louvain-la-Neuve, Belgium, April 3 - 6, 2005
Place of PublicationBelgium, Louvain-la-Neuve
Pagespaper-140
Publication statusPublished - 2005

Fingerprint

Dive into the research topics of 'Direct numerical simulations of premixed turbulent flames with flamelet-generated manifolds'. Together they form a unique fingerprint.

Cite this