TY - JOUR
T1 - Direct numerical simulations and experiments of a pseudo-2D gas-fluidized bed
AU - Tang, Y.
AU - Peters, E.A.J.F.
AU - Deen, N.G.
AU - Lau, Y.M.
AU - Kuipers, J.A.M.
PY - 2016/4/2
Y1 - 2016/4/2
N2 - This paper reports our study on fluidization of 5000 spherical particles in a pseudo-2D gas-fluidized bed by direct numerical simulations (DNS) and experiments as well. Simulations are performed using an immersed boundary method, together with the methodology developed in our earlier work for accurate prediction of gas–solid interactions at relatively low grid resolutions. This modelling approach provides detailed information on the gas flow and the motion of individual particles, which allows for a priori calculation of the bed hydrodynamics. Experimental measurements of solids mean motion are conducted using a combined technique of Particle Image Velocimetry (PIV) and Digital Image Analysis (DIA). Further, the PIV technique is extended and applied for instantaneous measurements of the particle granular temperature, which is the key characteristics of particle velocity fluctuations. For the first time, this paper reports a direct comparison in great detail between DNS results and experimental data for realistic gas fluidization. The detailed comparison reveals a reasonably good agreement with respect to the time-averaged solids motion and the pressure fluctuations. In addition, the granular temperatures calculated from the simulations agree well with the experimental data, but provide more details with respect to the variations corresponding to bubble formation and eruption. From our investigation, it also becomes clear that attention should be paid on the measurement and interpretation of the granular temperature.
AB - This paper reports our study on fluidization of 5000 spherical particles in a pseudo-2D gas-fluidized bed by direct numerical simulations (DNS) and experiments as well. Simulations are performed using an immersed boundary method, together with the methodology developed in our earlier work for accurate prediction of gas–solid interactions at relatively low grid resolutions. This modelling approach provides detailed information on the gas flow and the motion of individual particles, which allows for a priori calculation of the bed hydrodynamics. Experimental measurements of solids mean motion are conducted using a combined technique of Particle Image Velocimetry (PIV) and Digital Image Analysis (DIA). Further, the PIV technique is extended and applied for instantaneous measurements of the particle granular temperature, which is the key characteristics of particle velocity fluctuations. For the first time, this paper reports a direct comparison in great detail between DNS results and experimental data for realistic gas fluidization. The detailed comparison reveals a reasonably good agreement with respect to the time-averaged solids motion and the pressure fluctuations. In addition, the granular temperatures calculated from the simulations agree well with the experimental data, but provide more details with respect to the variations corresponding to bubble formation and eruption. From our investigation, it also becomes clear that attention should be paid on the measurement and interpretation of the granular temperature.
KW - DNS
KW - PIV
KW - DIA
KW - Granular temperature
KW - Gas-fluidized bed
U2 - 10.1016/j.ces.2015.12.026
DO - 10.1016/j.ces.2015.12.026
M3 - Article
SN - 0009-2509
VL - 143
SP - 166
EP - 180
JO - Chemical Engineering Science
JF - Chemical Engineering Science
ER -