Direct numerical simulation of complex multi-fluid flows using a combined front tracking and immersed boundary method

Research output: Contribution to journalArticleAcademicpeer-review

44 Citations (Scopus)
9 Downloads (Pure)

Abstract

In this paper a simulation model is presented for the Direct Numerical Simulation (DNS) of complex multi-fluid flows in which simultaneously (moving) deformable (drops or bubbles) and non-deformable (moving) elements (particles) are present, possibly with the additional presence of free surfaces. Our model combines a Front Tracking (FT) model developed by van Sint Annaland et al. (2008. Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Ann. Rev. Fluid Mech. 40, 47-70.) and an Immersed Boundary (IB) model developed by van der Hoef et al. (2008. Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Ann. Rev. Fluid Mech. 40, 47-70.) The FT part circumvents the explicit computation of the interface curvature. The IB part incorporates both particle-fluid and particle-particle interaction via a direct forcing method and a hard sphere Discrete Particle (DP) approach. In our model a fixed (Eulerian) grid is utilised to solve the Navier-Stokes equations for the entire computational domain. The no-slip condition at the surface of the moving particles is enforced via a momentum source term that only acts in the vicinity of the particle surface. For the enforcement of the no-slip condition Lagrangian force points are used, which are distributed evenly over the surface of the particle. Dissipative particle-particle and/or particle-wall collisions are accounted via a hard sphere DP approach using a three-parameter particle-particle interaction model accounting for normal and tangential restitution and tangential friction. The capabilities of the hybrid FT-IB model are demonstrated with a number of examples in which complex topological changes in the interface are encountered. © 2009 Elsevier Ltd. All rights reserved.
Original languageEnglish
Pages (from-to)2186-2201
JournalChemical Engineering Science
Volume64
Issue number9
DOIs
Publication statusPublished - 2009

Fingerprint

Dive into the research topics of 'Direct numerical simulation of complex multi-fluid flows using a combined front tracking and immersed boundary method'. Together they form a unique fingerprint.

Cite this