Direct current hybrid breakers : a design and its realization

A.M.S. Atmadji

Research output: ThesisPhd Thesis 1 (Research TU/e / Graduation TU/e)

2031 Downloads (Pure)

Abstract

The use of semiconductors for electric power circuit breakers instead of conventional breakers remains a utopia when designing fault current interrupters for high power networks. The major problems concerning power semiconductor circuit breakers are the excessive heat losses and their sensitivity to transients. However, conventional breakers are capable of dealing with such matters. A combination of the two methods, or so-called ‘hybrid breakers’, would appear to be a solution; however, hybrid breakers use separate parallel branches for conducting the main current and interrupting the short-circuit current. Such breakers are intended for protecting direct current (DC) traction systems. In this thesis hybrid switching techniques for current limitation and purely solidstate current interruption are investigated for DC breakers. This work analyzes the transient behavior of hybrid breakers and compares their operations with conventional breakers and similar solid-state devices in DC systems. Therefore a hybrid breaker was constructed and tested in a specially designed high power test circuit. A vacuum breaker was chosen as the main breaker in the main conducting path; then a commutation path was connected across the vacuum breaker where it provided current limitation and interruption. The commutation path operated only during any current interruption and the process required additional circuits. These included a certain energy storage, overvoltage suppressor and commutation switch. So that when discharging this energy, a controlled counter-current injection could be produced. That countercurrent opposed the main current in the breaker by superposition in order to create a forced currentzero. One-stage and two-stage commutation circuits have been treated extensively. This study project contains both theoretical and experimental investigations. A direct current shortcircuit source was constructed capable of delivering power equivalent to a fault. It supplied a direct voltage of 1kVDC which was rectified having been obtained from a 3-phase 10kV/380V supply. The source was successfully tested to deliver a fault current of 7kA with a time constant of 5ms. The hybrid breaker that was developed could provide protection for 750VDC traction systems. The breaker was equipped with a fault-recognizing circuit based on a current level triggering. An electronic circuit was built for this need and was included in the system. It monitored the system continuously and took action by generating trip signals when a fault was recognized. Interruption was followed by a suitable timing of the fast contact separation in the main breaker and the currentzero creation. An electrodynamically driven mechanism was successfully tested having a dead-time of 300:s to separate the main breaker contacts. Furthermore, a maximum peak current injection of kA at a frequency of 500Hz could be obtained in order to produce an artificial current-zero in the vacuum breaker. A successful current interruption with a prospective value of 5kA was achieved by the hybrid switching technique. In addition, measures were taken to prevent overvoltages. Experimentally, the concept of a hybrid breaker was compared with the functioning of all mechanical (air breaker) and all electronical (IGCT breaker) versions. Although a single stage interrupting method was verified experimentally, two two-stage interrupting methods were analyzed theoretically.
Original languageEnglish
QualificationDoctor of Philosophy
Awarding Institution
  • Department of Electrical Engineering
Supervisors/Advisors
  • Damstra, G.C., Promotor
  • Rijanto, H., Promotor
Award date4 May 2000
Place of PublicationEindhoven
Publisher
Print ISBNs90-386-1740-2
DOIs
Publication statusPublished - 2000

Fingerprint Dive into the research topics of 'Direct current hybrid breakers : a design and its realization'. Together they form a unique fingerprint.

  • Cite this

    Atmadji, A. M. S. (2000). Direct current hybrid breakers : a design and its realization. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR533277