Abstract
Recent experiments on a freely evolving dipolar vortex in a homogeneous shallow fluid layer have clearly shown the importance of vertical secondary flows on top of the primary horizontal motion. The present contribution focuses on the interaction of such a dipolar vortex with a sidewall. Accurate measurements of the three velocity components in a single horizontal plane have been performed using the Stereoscopic Particle Image Velocimetry (SPIV) technique. The experimental results, supported by numerical simulations, indicate that the complex vertical structure of a shallow-layer dipole becomes even more complex during the collision process. The observed growth of the kinetic energy associated with enhanced vertical motion pinpoints the strong discrepancies between vortex-wall interactions in shallow fluid layers and in purely two-dimensional wall-bounded turbulence.
Original language | English |
---|---|
Pages (from-to) | 397-404 |
Journal | European Journal of Mechanics. B, Fluids |
Volume | 28 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2009 |