Differential fault attacks on deterministic lattice signatures

Research output: Contribution to journalArticleAcademicpeer-review

29 Downloads (Pure)

Abstract

In this paper, we extend the applicability of differential fault attacks to lattice-based cryptography. We show how two deterministic lattice-based signature schemes, Dilithium and qTESLA, are vulnerable to such attacks. In particular, we demonstrate that single random faults can result in a nonce-reuse scenario which allows key recovery. We also expand this to fault-induced partial nonce-reuse attacks, which do not corrupt the validity of the computed signatures and thus are harder to detect.
Using linear algebra and lattice-basis reduction techniques, an attacker can extract one of the secret key elements after a successful fault injection. Some other parts of the key cannot be recovered, but we show that a tweaked signature algorithm can still successfully sign any message. We provide experimental verification of our attacks by performing clock glitching on an ARM Cortex-M4 microcontroller. In particular, we show that up to 65.2% of the execution time of Dilithium is vulnerable to an unprofiled attack, where a random fault is injected anywhere during the signing procedure and still leads to a successful key-recovery.
Original languageEnglish
Pages (from-to)21-43
Number of pages23
JournalIACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES)
Volume2018
Issue number3
DOIs
Publication statusPublished - 3 Sep 2018

Keywords

  • Differential fault attacks
  • post-quantum cryptography
  • lattice-based cryptography
  • digital signatures

Fingerprint Dive into the research topics of 'Differential fault attacks on deterministic lattice signatures'. Together they form a unique fingerprint.

Cite this