TY - JOUR
T1 - Diagnosing ions and neutrals via n = 2 excited hydrogen atoms in plasmas with high electron density and low electron temperature
AU - Shumack, A.E.
AU - Schram, D.C.
AU - Biesheuvel, J.
AU - Goedheer, W.J.
AU - Rooij, van, G.J.
PY - 2011
Y1 - 2011
N2 - Ion and neutral parameters are determined in the high electron density, magnetized, hydrogen plasma beam of an ITER divertor relevant plasma via measurements of the n=2 excited neutrals. Ion rotation velocity (up to 7 km/s) and temperature (2–3 eV~Te) are obtained from analysis of Ha spectra measured close to the plasma source. The methodology for neutral density determination is explained whereby measurements in the linear plasma beam of Pilot-PSI are compared to modeling. Ground-state atomic densities are obtained via the production rate of n=2 and the optical thickness of the Lyman-a transition (escape factor ~0.6) and yield an ionization degree >85% and dissociation degree in the residual gas of ~4%. A 30% proportion of molecules with a rovibrational excitation of more than 2 eV is deduced from the production rate of n=2 atoms. This proportion increases by more than a factor of 4 for a doubling of the electron density in the transition to ITER divertor relevant electron densities, probably because of a large increase in the production and confinement of ground-state neutrals. Measurements are made using laser-induced fluorescence (LIF) and absorption, the suitability of which are evaluated as diagnostics for this plasma regime. Absorption is found to have a much better sensitivity than LIF, mainly owing to competition with background emission.
AB - Ion and neutral parameters are determined in the high electron density, magnetized, hydrogen plasma beam of an ITER divertor relevant plasma via measurements of the n=2 excited neutrals. Ion rotation velocity (up to 7 km/s) and temperature (2–3 eV~Te) are obtained from analysis of Ha spectra measured close to the plasma source. The methodology for neutral density determination is explained whereby measurements in the linear plasma beam of Pilot-PSI are compared to modeling. Ground-state atomic densities are obtained via the production rate of n=2 and the optical thickness of the Lyman-a transition (escape factor ~0.6) and yield an ionization degree >85% and dissociation degree in the residual gas of ~4%. A 30% proportion of molecules with a rovibrational excitation of more than 2 eV is deduced from the production rate of n=2 atoms. This proportion increases by more than a factor of 4 for a doubling of the electron density in the transition to ITER divertor relevant electron densities, probably because of a large increase in the production and confinement of ground-state neutrals. Measurements are made using laser-induced fluorescence (LIF) and absorption, the suitability of which are evaluated as diagnostics for this plasma regime. Absorption is found to have a much better sensitivity than LIF, mainly owing to competition with background emission.
U2 - 10.1103/PhysRevE.83.036402
DO - 10.1103/PhysRevE.83.036402
M3 - Article
C2 - 21517599
SN - 1539-3755
VL - 83
SP - 36402
EP - 36412
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 3
M1 - 036402
ER -