TY - JOUR
T1 - Detection of subtle nocturnal motor activity from 3-D accelerometry recordings in epilepsy patients
AU - Nijsen, T.M.E.
AU - Cluitmans, P.J.M.
AU - Arends, J.B.A.M.
AU - Griep, P.A.M.
PY - 2007
Y1 - 2007
N2 - This paper presents a first step towards reliable detection of nocturnal epileptic seizures based on 3-D accelerometry (ACM) recordings. The main goal is to distinguish between data with and without subtle nocturnal motor activity, thus reducing the amount of data that needs further (more complex) analysis for seizure detection. From 15 ACM signals (measured on five positions on the body), two features are computed, the variance and the jerk. In the resulting 2-D feature space, a linear threshold function is used for classification. For training and testing, the algorithm ACM data along with video data is used from nocturnal registrations in seven mentally retarded patients with severe epilepsy. Per patient, the algorithm detected 100% of the periods of motor activity that are marked in video recordings and the ACM signals by experts. From all the detections, 43%-89% was correct (mean=65%). We were able to reduce the amount of data that need to be analyzed considerably. The results show that our approach can be used for detection of subtle nocturnal motor activity. Furthermore, our results indicate that our algorithm is robust for fluctuations across patients. Consequently, there is no need for training the algorithm for each new patient.
AB - This paper presents a first step towards reliable detection of nocturnal epileptic seizures based on 3-D accelerometry (ACM) recordings. The main goal is to distinguish between data with and without subtle nocturnal motor activity, thus reducing the amount of data that needs further (more complex) analysis for seizure detection. From 15 ACM signals (measured on five positions on the body), two features are computed, the variance and the jerk. In the resulting 2-D feature space, a linear threshold function is used for classification. For training and testing, the algorithm ACM data along with video data is used from nocturnal registrations in seven mentally retarded patients with severe epilepsy. Per patient, the algorithm detected 100% of the periods of motor activity that are marked in video recordings and the ACM signals by experts. From all the detections, 43%-89% was correct (mean=65%). We were able to reduce the amount of data that need to be analyzed considerably. The results show that our approach can be used for detection of subtle nocturnal motor activity. Furthermore, our results indicate that our algorithm is robust for fluctuations across patients. Consequently, there is no need for training the algorithm for each new patient.
U2 - 10.1109/TBME.2007.895114
DO - 10.1109/TBME.2007.895114
M3 - Article
C2 - 18018703
SN - 0018-9294
VL - 54
SP - 2073
EP - 2081
JO - IEEE Transactions on Biomedical Engineering
JF - IEEE Transactions on Biomedical Engineering
IS - 11
ER -