Designing a controller with image-based pipelined sensing and additive uncertainties

Research output: Contribution to journalArticleAcademicpeer-review

4 Citations (Scopus)
1 Downloads (Pure)


Pipelined image-based control uses parallel instances of its image-processing algorithm in a pipelined fashion to improve the quality of control. A performance-oriented control design improves the controller settling time with each additional processing resource, which creates a resources-performance trade-off. In real-life applications, it is common to have a continuous-time model with additive uncertainties in one or more parameters that may affect the controller performance and the aforementioned trade-off.We present a robustness analysis framework for performance-oriented pipelined controllers with additive model uncertainties.We present a technique to obtain discrete-time uncertainties based on the continuous-time uncertainties for given uncertainty bounds. To benchmark such uncertainty bounds for a real system, we consider uncertainties in one element of the system, potentially caused by multiple uncertain parameters in the model. Robustness and its impact in the trade-off analysis are studied. We also provide a robustness-oriented pipelined controller design that takes into account the benchmarked uncertainties. Our results show that in performance-oriented designs, the tolerable uncertainties for a pipelined controller decrease when increasing the number of pipes. In robustness-oriented designs, the controller robustness is enhanced with each newly added pipe. We show the feasibility of our technique by implementing a realistic example in a Hardware-in-the-Loop simulation.

Original languageEnglish
Article number33
Number of pages26
JournalACM Transactions on Cyber-Physical Systems
Issue number3
Publication statusPublished - Oct 2019


  • Image-based control
  • LQR tuning
  • Particle swarm optimization
  • Pipelined sensing control
  • Robustness analysis
  • Trade-off analysis


Dive into the research topics of 'Designing a controller with image-based pipelined sensing and additive uncertainties'. Together they form a unique fingerprint.

Cite this