TY - JOUR
T1 - Design of the ocular coil, a new device for non-invasive drug delivery
AU - Bertens, Christian J.F.
AU - Martino, Chiara
AU - van Osch, Marty C.
AU - Lataster, Arno
AU - Dias, Aylvin J.A.A.
AU - van den Biggelaar, Frank J.H.M.
AU - Tuinier, Remco
AU - Nuijts, Rudy M.M.A.
AU - Gijs, Marlies
PY - 2020/5
Y1 - 2020/5
N2 - Eye drops and ointments are the most prescribed methods for ocular drug delivery. However, due to low drug bioavailability, rapid drug elimination, and low patient compliance there is a need for improved ophthalmic drug delivery systems. This study provides insights into the design of a new drug delivery device that consists of an ocular coil filled with ketorolac loaded PMMA microspheres. Nine different ocular coils were created, ranging in wire diameter and coiled outer diameter. Based on its microsphere holding capacity and flexibility, one type of ocular coil was selected and used for further experiments. No escape of microspheres was observed after bending the ocular coil at curvature which reflect the in vivo situation in human upon positioning in the lower conjunctival sac. Shape behavior and tissue contact were investigated by computed tomography imaging after inserting the ocular coil in the lower conjunctival fornix of a human cadaver. Thanks to its high flexibility, the ocular coil bends along the circumference of the eye. Because of its location deep in the fornix, it appears unlikely that in vivo, the ocular coil will interfere with eye movements. In vitro drug release experiments demonstrate the potential of the ocular coil as sustained drug delivery device for the eye. We developed PMMA microspheres with a 26.5 ± 0.3 wt% ketorolac encapsulation efficiency. After 28 days, 69.9% ± 5.6% of the loaded ketorolac was released from the ocular coil when tested in an in vitro lacrimal system. In the first three days high released dose (48.7% ± 5.4%) was observed, followed by a more gradually release of ketorolac. Hence, the ocular coil seems a promising carrier for ophthalmic drugs delivery in the early postoperative time period.
AB - Eye drops and ointments are the most prescribed methods for ocular drug delivery. However, due to low drug bioavailability, rapid drug elimination, and low patient compliance there is a need for improved ophthalmic drug delivery systems. This study provides insights into the design of a new drug delivery device that consists of an ocular coil filled with ketorolac loaded PMMA microspheres. Nine different ocular coils were created, ranging in wire diameter and coiled outer diameter. Based on its microsphere holding capacity and flexibility, one type of ocular coil was selected and used for further experiments. No escape of microspheres was observed after bending the ocular coil at curvature which reflect the in vivo situation in human upon positioning in the lower conjunctival sac. Shape behavior and tissue contact were investigated by computed tomography imaging after inserting the ocular coil in the lower conjunctival fornix of a human cadaver. Thanks to its high flexibility, the ocular coil bends along the circumference of the eye. Because of its location deep in the fornix, it appears unlikely that in vivo, the ocular coil will interfere with eye movements. In vitro drug release experiments demonstrate the potential of the ocular coil as sustained drug delivery device for the eye. We developed PMMA microspheres with a 26.5 ± 0.3 wt% ketorolac encapsulation efficiency. After 28 days, 69.9% ± 5.6% of the loaded ketorolac was released from the ocular coil when tested in an in vitro lacrimal system. In the first three days high released dose (48.7% ± 5.4%) was observed, followed by a more gradually release of ketorolac. Hence, the ocular coil seems a promising carrier for ophthalmic drugs delivery in the early postoperative time period.
KW - Drug delivery
KW - Drug delivery system
KW - Microspheres
KW - Ocular coil
KW - Ophthalmology
UR - http://www.scopus.com/inward/record.url?scp=85082110379&partnerID=8YFLogxK
U2 - 10.1016/j.ejpb.2020.03.010
DO - 10.1016/j.ejpb.2020.03.010
M3 - Article
C2 - 32173602
AN - SCOPUS:85082110379
VL - 150
SP - 120
EP - 130
JO - European Journal of Pharmaceutics and Biopharmaceutics
JF - European Journal of Pharmaceutics and Biopharmaceutics
SN - 0939-6411
ER -