Design of a machine for the universal non-contact measurement of large free-form optics with 30 nm uncertainty

R. Henselmans, P.C.J.N. Rosielle, M. Steinbuch, I.J. Saunders

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

4 Citations (Scopus)
104 Downloads (Pure)


A new universal non-contact measurement machine design for measuring free-form optics with 30 nm expanded uncertainty is presented. In the cylindrical machine concept, an optical probe with 5 mm range is positioned over the surface by a motion system. Due to a 2nd order error effect when measuring smoothly curved surfaces, only 6 position measurement errors are critical (nanometer level). A separate metrology system directly measures these critical errors of the probe and the product relative to a metrology frame, circumventing most stage errors. An uncertainty estimation has been performed for the presented design, including a calibration uncertainty estimation and a dynamic analysis. Machine dynamics certainly cause relative motion between probe and product, but due to the non-contact nature of the measurement and the short metrology loop, these motions do not cause significant measurement errors. The resulting shape measurement error for aspheres up to medium free-forms is between 24 and 37 nm, and 30 – 85 nm for medium to heavily free-form surfaces. The suitability of the proposed design is herewith confirmed. A detailed design and a prototype of the machine are currently being developed.
Original languageEnglish
Title of host publicationOptical manufacturing and testing VI
Place of PublicationUnited States, San Diego
Pages586919-1 to 12
Publication statusPublished - 2005


Dive into the research topics of 'Design of a machine for the universal non-contact measurement of large free-form optics with 30 nm uncertainty'. Together they form a unique fingerprint.
  • Nanomefos

    P.C.J.N. (Nick) Rosielle (Manager)

    Mechanical Engineering

    Facility/equipment: Equipment

Cite this