Densities of Codes of Various Linearity Degrees in Translation-Invariant Metric Spaces

Anina Gruica, Anna-Lena Horlemann, Alberto Ravagnani, Nadja Willenborg (Corresponding author)

Research output: Contribution to journalArticleAcademicpeer-review

2 Citations (Scopus)
84 Downloads (Pure)

Abstract

We investigate the asymptotic density of error-correcting codes with good distance properties and prescribed linearity degree, including sublinear and nonlinear codes. We focus on the general setting of finite translation-invariant metric spaces, and then specialize our results to the Hamming metric, to the rank metric, and to the sum-rank metric. Our results show that the asymptotic density of codes heavily depends on the imposed linearity degree and the chosen metric.
Original languageEnglish
Pages (from-to)609-637
Number of pages29
JournalDesigns, Codes and Cryptography
Volume92
Issue number3
Early online date23 May 2023
DOIs
Publication statusPublished - Mar 2024

Funding

FundersFunder number
Royal Netherlands Academy of Arts and Sciences
European Commission
Nederlandse Organisatie voor Wetenschappelijk OnderzoekOCENW.KLEIN.539, VI.Vidi.203.045

    Keywords

    • cs.IT
    • cs.DM
    • math.IT
    • Hamming metric
    • Sum-rank metric
    • Gilbert–Varshamov bound
    • Rank metric
    • Graph theory
    • Sublinear codes
    • Singleton-type bound
    • Asymptotic density

    Fingerprint

    Dive into the research topics of 'Densities of Codes of Various Linearity Degrees in Translation-Invariant Metric Spaces'. Together they form a unique fingerprint.

    Cite this