Degree correlations in scale-free null models

C. Stegehuis

Research output: Contribution to journalArticleAcademic

36 Downloads (Pure)

Abstract

We study the average nearest neighbor degree $a(k)$ of vertices with degree $k$. In many real-world networks with power-law degree distribution $a(k)$ falls off in $k$, a property ascribed to the constraint that any two vertices are connected by at most one edge. We show that $a(k)$ indeed decays in $k$ in three simple random graph null models with power-law degrees: the erased configuration model, the rank-1 inhomogeneous random graph and the hyperbolic random graph. We consider the large-network limit when the number of nodes $n$ tends to infinity. We find for all three null models that $a(k)$ starts to decay beyond $n^{(\tau-2)/(\tau-1)}$ and then settles on a power law $a(k)\sim k^{\tau-3}$, with $\tau$ the degree exponent.
Original languageEnglish
Article number1709.01085
Number of pages19
JournalarXiv
Issue number1709.01085
Publication statusPublished - 4 Sep 2017

Bibliographical note

19 pages, 4 figures

Fingerprint

Dive into the research topics of 'Degree correlations in scale-free null models'. Together they form a unique fingerprint.

Cite this