We show that the problem of computing the hybridization number of two rooted binary phylogenetic trees on the same set of taxa X has a constant factor polynomial-time approximation if and only if the problem of computing a minimum-size feedback vertex set in a directed graph (DFVS) has a constant factor polynomial-time approximation. The latter problem, which asks for a minimum number of vertices to be removed from a directed graph to transform it into a directed acyclic graph, is one of the problems in Karp's seminal 1972 list of 21 NP-complete problems. However, despite considerable attention from the combinatorial optimization community it remains to this day unknown whether a constant factor polynomial-time approximation exists for DFVS. Our result thus places the (in)approximability of hybridization number in a much broader complexity context, and as a consequence we obtain that hybridization number inherits inapproximability results from the problem Vertex Cover. On the positive side, we use results from the DFVS literature to give an O(log r log log r) approximation for hybridization number, where r is the value of an optimal solution to the hybridization number problem.

Original language | English |
---|

Publisher | s.n. |
---|

Number of pages | 20 |
---|

Publication status | Published - 2011 |
---|

Name | arXiv.org |
---|

Volume | 1112.5359 [math.CO] |
---|