Crossing-preserving coherence-enhancing diffusion on invertible orientation scores

E.M. Franken, R. Duits

Research output: Contribution to journalArticleAcademicpeer-review

60 Citations (Scopus)

Abstract

Many image processing problems require the enhancement of crossing elongated structures. These problems cannot easily be solved by commonly used coherence-enhancing diffusion methods. Therefore, we propose a method for coherence-enhancing diffusion on the invertible orientation score of a 2D image. In an orientation score, the local orientation is represented by an additional third dimension, ensuring that crossing elongated structures are separated from each other. We consider orientation scores as functions on the Euclidean motion group, and use the group structure to apply left-invariant diffusion equations on orientation scores. We describe how we can calculate regularized left-invariant derivatives, and use the Hessian to estimate three descriptive local features: curvature, deviation from horizontality, and orientation confidence. These local features are used to adapt a nonlinear coherence-enhancing, crossing-preserving, diffusion equation on the orientation score. We propose two explicit finite-difference schemes to apply the nonlinear diffusion in the orientation score and provide a stability analysis. Experiments on both artificial and medical images show that preservation of crossings is the main advantage compared to standard coherence-enhancing diffusion. The use of curvature leads to improved enhancement of curves with high curvature. Furthermore, the use of deviation from horizontality makes it feasible to reduce the number of sampled orientations while still preserving crossings.
Original languageEnglish
Pages (from-to)253-278
JournalInternational Journal of Computer Vision
Volume85
Issue number3
DOIs
Publication statusPublished - 2009

Fingerprint

Dive into the research topics of 'Crossing-preserving coherence-enhancing diffusion on invertible orientation scores'. Together they form a unique fingerprint.

Cite this