TY - JOUR
T1 - Crossing-preserving coherence-enhancing diffusion on invertible orientation scores
AU - Franken, E.M.
AU - Duits, R.
PY - 2009
Y1 - 2009
N2 - Many image processing problems require the enhancement of crossing elongated structures. These problems cannot easily be solved by commonly used coherence-enhancing diffusion methods. Therefore, we propose a method for coherence-enhancing diffusion on the invertible orientation score of a 2D image. In an orientation score, the local orientation is represented by an additional third dimension, ensuring that crossing elongated structures are separated from each other. We consider orientation scores as functions on the Euclidean motion group, and use the group structure to apply left-invariant diffusion equations on orientation scores. We describe how we can calculate regularized left-invariant derivatives, and use the Hessian to estimate three descriptive local features: curvature, deviation from horizontality, and orientation confidence. These local features are used to adapt a nonlinear coherence-enhancing, crossing-preserving, diffusion equation on the orientation score. We propose two explicit finite-difference schemes to apply the nonlinear diffusion in the orientation score and provide a stability analysis. Experiments on both artificial and medical images show that preservation of crossings is the main advantage compared to standard coherence-enhancing diffusion. The use of curvature leads to improved enhancement of curves with high curvature. Furthermore, the use of deviation from horizontality makes it feasible to reduce the number of sampled orientations while still preserving crossings.
AB - Many image processing problems require the enhancement of crossing elongated structures. These problems cannot easily be solved by commonly used coherence-enhancing diffusion methods. Therefore, we propose a method for coherence-enhancing diffusion on the invertible orientation score of a 2D image. In an orientation score, the local orientation is represented by an additional third dimension, ensuring that crossing elongated structures are separated from each other. We consider orientation scores as functions on the Euclidean motion group, and use the group structure to apply left-invariant diffusion equations on orientation scores. We describe how we can calculate regularized left-invariant derivatives, and use the Hessian to estimate three descriptive local features: curvature, deviation from horizontality, and orientation confidence. These local features are used to adapt a nonlinear coherence-enhancing, crossing-preserving, diffusion equation on the orientation score. We propose two explicit finite-difference schemes to apply the nonlinear diffusion in the orientation score and provide a stability analysis. Experiments on both artificial and medical images show that preservation of crossings is the main advantage compared to standard coherence-enhancing diffusion. The use of curvature leads to improved enhancement of curves with high curvature. Furthermore, the use of deviation from horizontality makes it feasible to reduce the number of sampled orientations while still preserving crossings.
U2 - 10.1007/s11263-009-0213-5
DO - 10.1007/s11263-009-0213-5
M3 - Article
SN - 0920-5691
VL - 85
SP - 253
EP - 278
JO - International Journal of Computer Vision
JF - International Journal of Computer Vision
IS - 3
ER -