Cross-ventilation in a generic isolated building equipped with louvers: wind-tunnel experiments and CFD simulations

Katarina Kosutova (Corresponding author), T. van Hooff, Christina Vanderwel, Bert Blocken, Jan Hensen

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)
29 Downloads (Pure)

Abstract

Natural ventilation can be used to improve indoor air quality, remove contaminants from spaces and to remove heat from a building during the day, or during the night. In some cases, openings for natural ventilation are equipped with shading devices – such as louvers – to reduce solar heat gains while allowing natural ventilation. This study presents wind-tunnel experiments and computational fluid dynamics (CFD) simulations of a cross-ventilated building equipped with louvers. Four opening positions are studied: (i) openings in the center, (ii) upper or (iii) lower part of the windward and leeward facades or (iv) one opening in the upper part of the windward facade and one opening in the lower part of the leeward facade. The 3D steady Reynolds-averaged Navier-Stokes (RANS) simulations are performed with three turbulence models (RNG k-ε, SST k-ω, RSM) and validated with the wind-tunnel experiments. The experimental results show that the largest velocities occur in a building with openings in the upper part of the facade. The best agreement with experimental data is provided by RSM. In addition, CFD simulations for buildings without louvers are conducted for the same opening positions to evaluate the effect of louvers on the dimensionless volume flow rate, age of air and air exchange efficiency. The highest dimensionless volume flow rate at reduced scale (0.69) is obtained in the building with louvered openings in the upper part of the facade and the highest air exchange efficiency is achieved for a building with louvered openings in the center of the facade (45%).
Original languageEnglish
Pages (from-to)263-280
Number of pages18
JournalBuilding and Environment
Volume154
DOIs
Publication statusPublished - 1 May 2019

Fingerprint

Facades
computational fluid dynamics
wind tunnel
Ventilation
ventilation
Wind tunnels
Computational fluid dynamics
air
simulation
experiment
Computer simulation
heat
Experiments
indoor air
shading
efficiency
air quality
sea surface temperature
Air
turbulence

Cite this

@article{e950e9953bc6432b99ce8cd7740e5fad,
title = "Cross-ventilation in a generic isolated building equipped with louvers: wind-tunnel experiments and CFD simulations",
abstract = "Natural ventilation can be used to improve indoor air quality, remove contaminants from spaces and to remove heat from a building during the day, or during the night. In some cases, openings for natural ventilation are equipped with shading devices – such as louvers – to reduce solar heat gains while allowing natural ventilation. This study presents wind-tunnel experiments and computational fluid dynamics (CFD) simulations of a cross-ventilated building equipped with louvers. Four opening positions are studied: (i) openings in the center, (ii) upper or (iii) lower part of the windward and leeward facades or (iv) one opening in the upper part of the windward facade and one opening in the lower part of the leeward facade. The 3D steady Reynolds-averaged Navier-Stokes (RANS) simulations are performed with three turbulence models (RNG k-ε, SST k-ω, RSM) and validated with the wind-tunnel experiments. The experimental results show that the largest velocities occur in a building with openings in the upper part of the facade. The best agreement with experimental data is provided by RSM. In addition, CFD simulations for buildings without louvers are conducted for the same opening positions to evaluate the effect of louvers on the dimensionless volume flow rate, age of air and air exchange efficiency. The highest dimensionless volume flow rate at reduced scale (0.69) is obtained in the building with louvered openings in the upper part of the facade and the highest air exchange efficiency is achieved for a building with louvered openings in the center of the facade (45{\%}).",
author = "Katarina Kosutova and {van Hooff}, T. and Christina Vanderwel and Bert Blocken and Jan Hensen",
year = "2019",
month = "5",
day = "1",
doi = "10.1016/j.buildenv.2019.03.019",
language = "English",
volume = "154",
pages = "263--280",
journal = "Building and Environment",
issn = "0360-1323",
publisher = "Elsevier",

}

TY - JOUR

T1 - Cross-ventilation in a generic isolated building equipped with louvers

T2 - wind-tunnel experiments and CFD simulations

AU - Kosutova, Katarina

AU - van Hooff, T.

AU - Vanderwel, Christina

AU - Blocken, Bert

AU - Hensen, Jan

PY - 2019/5/1

Y1 - 2019/5/1

N2 - Natural ventilation can be used to improve indoor air quality, remove contaminants from spaces and to remove heat from a building during the day, or during the night. In some cases, openings for natural ventilation are equipped with shading devices – such as louvers – to reduce solar heat gains while allowing natural ventilation. This study presents wind-tunnel experiments and computational fluid dynamics (CFD) simulations of a cross-ventilated building equipped with louvers. Four opening positions are studied: (i) openings in the center, (ii) upper or (iii) lower part of the windward and leeward facades or (iv) one opening in the upper part of the windward facade and one opening in the lower part of the leeward facade. The 3D steady Reynolds-averaged Navier-Stokes (RANS) simulations are performed with three turbulence models (RNG k-ε, SST k-ω, RSM) and validated with the wind-tunnel experiments. The experimental results show that the largest velocities occur in a building with openings in the upper part of the facade. The best agreement with experimental data is provided by RSM. In addition, CFD simulations for buildings without louvers are conducted for the same opening positions to evaluate the effect of louvers on the dimensionless volume flow rate, age of air and air exchange efficiency. The highest dimensionless volume flow rate at reduced scale (0.69) is obtained in the building with louvered openings in the upper part of the facade and the highest air exchange efficiency is achieved for a building with louvered openings in the center of the facade (45%).

AB - Natural ventilation can be used to improve indoor air quality, remove contaminants from spaces and to remove heat from a building during the day, or during the night. In some cases, openings for natural ventilation are equipped with shading devices – such as louvers – to reduce solar heat gains while allowing natural ventilation. This study presents wind-tunnel experiments and computational fluid dynamics (CFD) simulations of a cross-ventilated building equipped with louvers. Four opening positions are studied: (i) openings in the center, (ii) upper or (iii) lower part of the windward and leeward facades or (iv) one opening in the upper part of the windward facade and one opening in the lower part of the leeward facade. The 3D steady Reynolds-averaged Navier-Stokes (RANS) simulations are performed with three turbulence models (RNG k-ε, SST k-ω, RSM) and validated with the wind-tunnel experiments. The experimental results show that the largest velocities occur in a building with openings in the upper part of the facade. The best agreement with experimental data is provided by RSM. In addition, CFD simulations for buildings without louvers are conducted for the same opening positions to evaluate the effect of louvers on the dimensionless volume flow rate, age of air and air exchange efficiency. The highest dimensionless volume flow rate at reduced scale (0.69) is obtained in the building with louvered openings in the upper part of the facade and the highest air exchange efficiency is achieved for a building with louvered openings in the center of the facade (45%).

U2 - 10.1016/j.buildenv.2019.03.019

DO - 10.1016/j.buildenv.2019.03.019

M3 - Article

VL - 154

SP - 263

EP - 280

JO - Building and Environment

JF - Building and Environment

SN - 0360-1323

ER -