Coupling of multicomponent transport models in particle-resolved fluid-solid simulations

S. Tadayon Mousavi (Corresponding author), C.M.Y. Claassen, M.W. Baltussen, E.A.J.F. Peters, J.A.M. Kuipers

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)
86 Downloads (Pure)

Abstract

An accurate and self-consistent methodology for mass transport of multi-component mixtures in multi phase media is a necessity for a proper description of complex physical and chemical processes in reactors such as catalytic packed beds. In this regard, a novel methodology has been developed to describe and couple underlying transport phenomena in fluid and porous media as well as at the solid-fluid interface. The methodology is symmetric as it treats all components in a mixture equally. The Maxwell-Stefan equations are symmetrically formulated, discretized conservatively and coupled with a compressible flow solver for the fluid part. The Dusty Gas Model is applied inside porous media by developing a self-consistent and robust numerical formulation. A ghost-cell Immersed Boundary Method is used to capture the physics at the solid-fluid interface with the implementation of a novel symmetric non-singular mass flux formulation. Several test cases are established to demonstrate the accuracy and robustness of the newly developed symmetric methodology in this paper. These test cases can be used as benchmark for the future development of symmetric methodologies for multicomponent systems in multi phase media.

Original languageEnglish
Article number119920
Number of pages22
JournalChemical Engineering Science
Volume291
DOIs
Publication statusPublished - 5 Jun 2024

Keywords

  • Dusty Gas Model
  • Immersed Boundary Method
  • Maxwell-Stefan equations
  • Symmetric multicomponent transport modeling
  • Transport in porous media

Fingerprint

Dive into the research topics of 'Coupling of multicomponent transport models in particle-resolved fluid-solid simulations'. Together they form a unique fingerprint.

Cite this