Correlative microscopy of single self-assembled nanorod dimers for refractometric sensing

Michael A. Beuwer, Peter Zijlstra (Corresponding author)

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Single metallic particles and dimers of nanospheres have been used extensively for sensing, but dimers of particles provide attractive advantages because they exhibit multiple modes that can be tuned by the dimer geometry. Here, we employ correlative microscopy of single self-assembled dimers of gold nanorods to study their performance as refractometric sensors. The correlation between atomic force microscopy and single-particle white-light spectroscopy allows us to relate the measured sensitivity to numerical simulations taking into account the exact geometry of the construct. The sensitivity of the antibonding mode is in good agreement with simulations, whereas the bonding mode exhibits a reduced sensitivity related to the accessibility of the gap region between the particles. We find that the figure of merit is a trade-off between the resonance linewidth and its refractive index sensitivity, which depend in opposite ways on the interparticle angle. The presence of two narrow plasmon resonances in the visible to near-infrared wavelength regime makes nanorod dimers exciting candidates for multicolor and multiplexed sensing.

Original languageEnglish
Article number044701
Number of pages9
JournalJournal of Chemical Physics
Volume155
Issue number4
DOIs
Publication statusPublished - 28 Jul 2021

Bibliographical note

Funding Information:
P.Z. acknowledges financial support from The Netherlands Organization for Scientific Research (NWO VIDI).

Publisher Copyright:
© 2021 Author(s).

Fingerprint

Dive into the research topics of 'Correlative microscopy of single self-assembled nanorod dimers for refractometric sensing'. Together they form a unique fingerprint.

Cite this