Abstract
The combination of MALDI-ToF-MS and pulsed laser polymerization has been used to study the propagation rate coefficients for the copolymer system styrene-methyl methacrylate. For the first time, complete information regarding mode of termination, reactivity of photoinitiator-derived radicals, copolymer molecular mass, chemical composition, and copolymerization rates is obtained interrelated. The polymerizations were carried out in bulk with varying styrene concentrations at a temperature of 15.2 °C by an excimer pulsed laser with varying frequencies. Both chemical composition distributions and molecular weight distributions were determined by MALDI-ToF-MS. The data were fitted to the implicit penultimate unit model and have resulted in new point estimates of the monomer and radical reactivity ratios for the copolymer system styrene-methyl methacrylate: rSt = 0.517, rMMA = 0.420, sSt = 0.296, sMMA = 0.262. Comparison between Monte Carlo simulations and the obtained results further confirmed the very successful combination of pulsed laser copolymerization experiments with MALDI-ToF-MS. The obtained results are believed to be the most accurate and complete set of copolymerization parameters to date.
Original language | English |
---|---|
Pages (from-to) | 4471-4480 |
Journal | Journal of the American Chemical Society |
Volume | 128 |
Issue number | 13 |
DOIs | |
Publication status | Published - 2006 |