Cooling-Rate Computer Simulations for the Description of Crystallization of Organic Phase-Change Materials

Victor M. Nazarychev, Artyom D. Glova, Sergey V. Larin, Alexey V. Lyulin, Sergey V. Lyulin, Andrey A. Gurtovenko

Research output: Contribution to journalArticleAcademicpeer-review

10 Citations (Scopus)
75 Downloads (Pure)

Abstract

A molecular-level insight into phase transformations is in great demand for many molecular systems. It can be gained through computer simulations in which cooling is applied to a system at a constant rate. However, the impact of the cooling rate on the crystallization process is largely unknown. To this end, here we performed atomic-scale molecular dynamics simulations of organic phase-change materials (paraffins), in which the cooling rate was varied over four orders of magnitude. Our computational results clearly show that a certain threshold (1.2 × 1011 K/min) in the values of cooling rates exists. When cooling is slower than the threshold, the simulations qualitatively reproduce an experimentally observed abrupt change in the temperature dependence of the density, enthalpy, and thermal conductivity of paraffins upon crystallization. Beyond this threshold, when cooling is too fast, the paraffin’s properties in simulations start to deviate considerably from experimental data: the faster the cooling, the larger part of the system is trapped in the supercooled liquid state. Thus, a proper choice of a cooling rate is of tremendous importance in computer simulations of organic phase-change materials, which are of great promise for use in domestic heat storage devices.

Original languageEnglish
Article number14576
Number of pages16
JournalInternational Journal of Molecular Sciences
Volume23
Issue number23
DOIs
Publication statusPublished - Dec 2022

Bibliographical note

Funding Information:
This work was supported by the Russian Science Foundation (Agreement No. 19-13-00178).

Publisher Copyright:
© 2022 by the authors.

Funding

This work was supported by the Russian Science Foundation (Agreement No. 19-13-00178).

Keywords

  • computer modeling
  • cooling rate
  • crystallization enthalpy
  • molecular dynamics
  • organic phase-change materials
  • paraffins
  • thermal conductivity

Fingerprint

Dive into the research topics of 'Cooling-Rate Computer Simulations for the Description of Crystallization of Organic Phase-Change Materials'. Together they form a unique fingerprint.

Cite this