Convergence analysis of the fixed-point method with the hybrid analytical modeling for 2-D nonlinear magnetostatic problems

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

This paper presents the convergence analysis of the fixed-point method (FPM) to model the nonlinear magnetic characteristics of a 2-D magnetostatic problem. In this study, FPM is used as the iterative nonlinear solver of the hybrid analytical modeling (HAM) technique for the accurate computation of the magnetic field distribution. The benchmark consists of a stator with excitation windings, an airgap, and a slotless mover. The relative errors between two successive iterations are calculated using different error estimators: the attraction force on the mover, the Fourier coefficients defined in the airgap, the magnetic flux density, and the magnetic scalar potential distributions. The effect of the number of mesh elements and harmonics on the accuracy and computational cost of the model is investigated for different levels of magnetic saturation. It is observed that the maximum rate of change in the relative difference of attraction force during the iterations is found to be 0.52 under the magnetic saturation. In addition, the absolute error of the attraction force between the developed hybrid model with FPM and the finite element method (FEM) is achieved to be 0.18%, while HAM has approximately three times less number of degrees-of-freedom compared to FEM.
Original languageEnglish
JournalIEEE Transactions on Magnetics
VolumeXX
Issue numberXX
DOIs
Publication statusE-pub ahead of print - 21 Sep 2020

Fingerprint Dive into the research topics of 'Convergence analysis of the fixed-point method with the hybrid analytical modeling for 2-D nonlinear magnetostatic problems'. Together they form a unique fingerprint.

Cite this