Control of the electrical conductivity of composites of antimony doped tin oxide (ATO) nanoparticles and acrylate by grafting of 3-methacryloxpropyltrimethoxysilane (MPS)

W. Posthumus, J. Laven, G. With, de, R. Linde, van der

Research output: Contribution to journalArticleAcademicpeer-review

30 Citations (Scopus)

Abstract

The effect of the addition of antimony doped tin oxide (ATO) nanoparticles on the electrical conductivity of acrylate films is described. To enable dispersing of ATO in acrylate matrices, 3-methacryloxypropyltrimethoxysilane (MPS) was grafted on the surface of the filler. The amount of MPS used for this surface modification was found to strongly affect the electrical conductivity. Surface modification with a large amount of MPS resulted in colloidally stable dispersions of ATO, leading to a homogeneous distribution. Surface modification with small amounts of MPS led to instable ATO dispersions and aggregation of ATO into a fractal type network, which gives a much higher conductivity especially at low-volume fractions. For composites with a fractal type ATO network a second effect was found. Decreasing the amount of on ATO grafted MPS resulted in an increase of the electrical conduction between the ATO particles.
Original languageEnglish
Pages (from-to)394-401
JournalJournal of Colloid and Interface Science
Volume304
Issue number2
DOIs
Publication statusPublished - 2006

Fingerprint

Dive into the research topics of 'Control of the electrical conductivity of composites of antimony doped tin oxide (ATO) nanoparticles and acrylate by grafting of 3-methacryloxpropyltrimethoxysilane (MPS)'. Together they form a unique fingerprint.

Cite this