Control of a hydraulically actuated continuously variable transmission

M.F.M. Pesgens, B.G. Vroemen, B. Stouten, F.E. Veldpaus, M. Steinbuch

Research output: Contribution to journalArticleAcademicpeer-review

36 Citations (Scopus)
4 Downloads (Pure)


Vehicular drivelines with hierarchical powertrain control require good component controller tracking, enabling the main controller to reach the desired goals. This paper focuses on the development of a transmission ratio controller for a hydraulically actuated metal push-belt continuously variable transmission (CVT), using models for the mechanical and the hydraulic part of the CVT. The controller consists of an anti-windup PID feedback part with linearizing weighting and a setpoint feedforward. Physical constraints on the system, especially with respect to the hydraulic pressures, are accounted for using a feedforward part to eliminate their undesired effects on the ratio. The total ratio controller guarantees that one clamping pressure setpoint is minimal, avoiding belt slip, while the other is raised above the minimum level to enable shifting. This approach has potential for improving the efficiency of the CVT, compared to non-model based ratio controllers. Vehicle experiments show that adequate tracking is obtained together with good robustness against actuator saturation. The largest deviations from the ratio setpoint are caused by actuator pressure saturation. It is further revealed that all feedforward and compensator terms in the controller have a beneficial effect on minimizing the tracking error.
Original languageEnglish
Pages (from-to)387-406
Number of pages21
JournalVehicle System Dynamics
Issue number5
Publication statusPublished - 2006


Dive into the research topics of 'Control of a hydraulically actuated continuously variable transmission'. Together they form a unique fingerprint.

Cite this