TY - JOUR
T1 - Continuous thermodilution to assess absolute flow and microvascular resistance
T2 - validation in humans using [15O]H2O positron emission tomography
AU - Everaars, Henk
AU - de Waard, Guus A.
AU - Schumacher, Stefan P.
AU - Zimmermann, Frederik M.
AU - Bom, Michiel J.
AU - van de Ven, Peter M.
AU - Raijmakers, Pieter G.
AU - Lammertsma, Adriaan A.
AU - Götte, Marco J.
AU - van Rossum, Albert C.
AU - Kurata, Akira
AU - Marques, Koen M.J.
AU - Pijls, Nico H.J.
AU - van Royen, Niels
AU - Knaapen, Paul
PY - 2019/7/21
Y1 - 2019/7/21
N2 - Aims: Continuous thermodilution is a novel technique to quantify absolute coronary flow and microvascular resistance (MVR). Notably, intracoronary infusion of saline elicits maximal hyperaemia, obviating the need for adenosine. The primary aim of this study was to validate continuous thermodilution in humans by comparing invasive measurements to [15O]H2O positron emission tomography (PET). As a secondary goal, absolute flow and MVR were compared between invasive measurements obtained with and without adenosine. Methods and results: Twenty-five patients underwent coronary computed tomography angiography (CCTA), [15O]H2O PET, and invasive assessment. Absolute coronary flow and MVR were measured in the left anterior descending and left circumflex artery using a dedicated infusion catheter and a temperature/pressure sensor-Tipped guidewire. Invasive measurements were performed with and without adenosine. In order to compare invasive flow measurements with PET perfusion, subtending myocardial mass of the investigated vessels was derived from CCTA using the Voronoi algorithm. Invasive and non-invasive measurements of adenosine-induced hyperaemic flow and MVR showed strong correlation (r = 0.91; P < 0.001 for flow and r = 0.85; P < 0.001 for MVR) and good agreement [intraclass correlation coefficient (ICC) = 0.90; P < 0.001 for flow and ICC = 0.79; P < 0.001 for MVR]. Absolute flow and MVR also correlated well between measurements with and without adenosine (r = 0.97; P < 0.001 for flow and r = 0.98; P < 0.001 for MVR) and showed good agreement (ICC = 0.96; P < 0.001 for flow and ICC = 0.98; P < 0.001 for MVR). Conclusions: Continuous thermodilution is an accurate method to measure absolute coronary flow and MVR, which is evidenced by strong agreement with [15O]H2O PET derived flow and resistance. Absolute flow and MVR correlate highly between invasive measurements obtained with and without adenosine, which confirms that intracoronary infusion of room temperature saline elicits steady-state maximal hyperaemia.
AB - Aims: Continuous thermodilution is a novel technique to quantify absolute coronary flow and microvascular resistance (MVR). Notably, intracoronary infusion of saline elicits maximal hyperaemia, obviating the need for adenosine. The primary aim of this study was to validate continuous thermodilution in humans by comparing invasive measurements to [15O]H2O positron emission tomography (PET). As a secondary goal, absolute flow and MVR were compared between invasive measurements obtained with and without adenosine. Methods and results: Twenty-five patients underwent coronary computed tomography angiography (CCTA), [15O]H2O PET, and invasive assessment. Absolute coronary flow and MVR were measured in the left anterior descending and left circumflex artery using a dedicated infusion catheter and a temperature/pressure sensor-Tipped guidewire. Invasive measurements were performed with and without adenosine. In order to compare invasive flow measurements with PET perfusion, subtending myocardial mass of the investigated vessels was derived from CCTA using the Voronoi algorithm. Invasive and non-invasive measurements of adenosine-induced hyperaemic flow and MVR showed strong correlation (r = 0.91; P < 0.001 for flow and r = 0.85; P < 0.001 for MVR) and good agreement [intraclass correlation coefficient (ICC) = 0.90; P < 0.001 for flow and ICC = 0.79; P < 0.001 for MVR]. Absolute flow and MVR also correlated well between measurements with and without adenosine (r = 0.97; P < 0.001 for flow and r = 0.98; P < 0.001 for MVR) and showed good agreement (ICC = 0.96; P < 0.001 for flow and ICC = 0.98; P < 0.001 for MVR). Conclusions: Continuous thermodilution is an accurate method to measure absolute coronary flow and MVR, which is evidenced by strong agreement with [15O]H2O PET derived flow and resistance. Absolute flow and MVR correlate highly between invasive measurements obtained with and without adenosine, which confirms that intracoronary infusion of room temperature saline elicits steady-state maximal hyperaemia.
KW - Absolute coronary flow
KW - Microcirculation
KW - Microvascular resistance
KW - Positron emission tomography
KW - Thermodilution
UR - http://www.scopus.com/inward/record.url?scp=85072749614&partnerID=8YFLogxK
U2 - 10.1093/eurheartj/ehz245
DO - 10.1093/eurheartj/ehz245
M3 - Article
C2 - 31327012
AN - SCOPUS:85072749614
SN - 0195-668X
VL - 40
SP - 2350
EP - 2359
JO - European Heart Journal
JF - European Heart Journal
IS - 28
ER -