### Abstract

An algorithm is presented for the construction of fixed-length insertion/deletion correcting runlength-limited (RLL) codes. In this construction binary (d,k)-constrained codewords are generated by codewords of a q-ary Lee metric based code. It is shown that this new construction always yields better codes than known constructions. The use of a q-ary Lee (1987) metric code (q odd) is based on the assumption that an error (insertion, deletion, or peak-shift) has maximal size (q-1)/2. It is shown that a decoding algorithm for the Lee metric code can be extended so that it can also be applied to insertion/deletion correcting RLL codes. Furthermore, such an extended algorithm can also correct some error patterns containing errors of size more than (q-1)/2. As a consequence, if s denotes the maximal size of an error, then in some cases the alphabet size of the generating code can be s+1 instead of 2·s+1.

Original language | English |
---|---|

Pages (from-to) | 1841-1856 |

Journal | IEEE Transactions on Information Theory |

Volume | 40 |

Issue number | 6 |

DOIs | |

Publication status | Published - 1994 |

## Fingerprint Dive into the research topics of 'Construction of fixed-length insertion/deletion correcting runlength-limited codes'. Together they form a unique fingerprint.

## Cite this

Bours, P. A. H. (1994). Construction of fixed-length insertion/deletion correcting runlength-limited codes.

*IEEE Transactions on Information Theory*,*40*(6), 1841-1856. https://doi.org/10.1109/18.340459