Consensus versus Individual QSARs in Classification: Comparison on a Large-Scale Case Study

Cecile Valsecchi, Francesca Grisoni, Viviana Consonni, Davide Ballabio

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Consensus strategies have been widely applied in many different scientific fields, based on the assumption that the fusion of several sources of information increases the outcome reliability. Despite the widespread application of consensus approaches, their advantages in quantitative structure-activity relationship (QSAR) modeling have not been thoroughly evaluated, mainly due to the lack of appropriate large-scale data sets. In this study, we evaluated the advantages and drawbacks of consensus approaches compared to single classification QSAR models. To this end, we used a data set of three properties (androgen receptor binding, agonism, and antagonism) for approximately 4000 molecules with predictions performed by more than 20 QSAR models, made available in a large-scale collaborative project. The individual QSAR models were compared with two consensus approaches, majority voting and the Bayes consensus with discrete probability distributions, in both protective and nonprotective forms. Consensus strategies proved to be more accurate and to better cover the analyzed chemical space than individual QSARs on average, thus motivating their widespread application for property prediction. Scripts and data to reproduce the results of this study are available for download.

Original languageEnglish
Pages (from-to)1215-1223
Number of pages9
JournalJournal of Chemical Information and Modeling
Volume60
Issue number3
DOIs
Publication statusPublished - 23 Mar 2020
Externally publishedYes

Fingerprint Dive into the research topics of 'Consensus versus Individual QSARs in Classification: Comparison on a Large-Scale Case Study'. Together they form a unique fingerprint.

Cite this