Abstract
This paper describes the gelation of highly concentrated graphene/polymer dispersions triggered by mild heating. The gel formation is only dependent on the concentration of graphene with 3.25 mg mL−1 as the minimum value for graphene network formation. The graphene gel is then utilized for the preparation of colloidally stable and highly concentrated (52 mg mL−1) graphene pastes that demonstrate excellent performance in screen printing down to lines of 40 μm in width. Printed patterns dried at 100 °C for only 5 min exhibit sheet resistances of 30 Ω −1 at 25 μm thickness, thus, removing the need for long-time high temperature annealing, doping, or other treatments. Such a low drying temperature, high printing definition, and compatibility with industrially relevant plastic and paper substrates brings high-volume roll-to-roll application in printed flexible electronics within reach.
Original language | English |
---|---|
Pages (from-to) | 586-593 |
Journal | Advanced Functional Materials |
Volume | 26 |
Issue number | 4 |
DOIs | |
Publication status | Published - 26 Jan 2016 |
Keywords
- Gelation
- Graphene
- Ink
- screen printing
Fingerprint
Dive into the research topics of 'Conductive screen printing inks by gelation of graphene dispersions'. Together they form a unique fingerprint.Equipment
-
Center for Multiscale Electron Microscopy (CMEM)
Friedrich, H. (Manager), Bransen, M. (Education/research officer), Schmit, P. (Education/research officer), Schreur - Piet, I. (Other) & Spoelstra, A. (Education/research officer)
Physical ChemistryFacility/equipment: Research lab