### Abstract

Original language | English |
---|---|

Pages (from-to) | 340-365 |

Number of pages | 26 |

Journal | Journal of Computational Geometry |

Volume | 8 |

Issue number | 1 |

DOIs | |

Publication status | Published - 2018 |

### Fingerprint

### Cite this

*Journal of Computational Geometry*,

*8*(1), 340-365. https://doi.org/10.20382/jocg.v8i1a13

}

*Journal of Computational Geometry*, vol. 8, no. 1, pp. 340-365. https://doi.org/10.20382/jocg.v8i1a13

**Computing nonsimple polygons of minimum perimeter.** / Fekete, S.P.; Haas, A.; Hemmer, M.; Hoffmann, M.; Kostitsyna, I.; Krupke, D.; Maurer, F.; Mitchell, J.S.B.; Schmidt, A.; Schmidt, C.; Troegel, J.

Research output: Contribution to journal › Article › Academic › peer-review

TY - JOUR

T1 - Computing nonsimple polygons of minimum perimeter

AU - Fekete, S.P.

AU - Haas, A.

AU - Hemmer, M.

AU - Hoffmann, M.

AU - Kostitsyna, I.

AU - Krupke, D.

AU - Maurer, F.

AU - Mitchell, J.S.B.

AU - Schmidt, A.

AU - Schmidt, C.

AU - Troegel, J.

PY - 2018

Y1 - 2018

N2 - We consider the Minimum Perimeter Polygon Problem (MP3): for a given set V of points in the plane, find a polygon P with holes that has vertex set V , such that the total boundary length is smallest possible. The MP3 can be considered a natural geometric generalization of the Traveling Salesman Problem (TSP), which asks for a simple polygon with minimum perimeter. Just like the TSP, the MP3 occurs naturally in the context of curve reconstruction. Even though the closely related problem of finding a minimum cycle cover is polynomially solvable by matching techniques, we prove how the topological structure of a polygon leads to NP-hardness of the MP3. On the positive side, we provide constant-factor approximation algorithms. In addition to algorithms with theoretical worst-case guarantess, we provide practical methods for computing provably optimal solutions for relatively large instances, based on integer programming. An additional difficulty compared to the TSP is the fact that only a subset of subtour constraints is valid, depending not on combinatorics, but on geometry. We overcome this difficulty by establishing and exploiting geometric properties. This allows us to reliably solve a wide range of benchmark instances with up to 600 vertices within reasonable time on a standard machine. We also show that restricting the set of connections between points to edges of the Delaunay triangulation yields results that are on average within 0.5% of the optimum for large classes of benchmark instances.

AB - We consider the Minimum Perimeter Polygon Problem (MP3): for a given set V of points in the plane, find a polygon P with holes that has vertex set V , such that the total boundary length is smallest possible. The MP3 can be considered a natural geometric generalization of the Traveling Salesman Problem (TSP), which asks for a simple polygon with minimum perimeter. Just like the TSP, the MP3 occurs naturally in the context of curve reconstruction. Even though the closely related problem of finding a minimum cycle cover is polynomially solvable by matching techniques, we prove how the topological structure of a polygon leads to NP-hardness of the MP3. On the positive side, we provide constant-factor approximation algorithms. In addition to algorithms with theoretical worst-case guarantess, we provide practical methods for computing provably optimal solutions for relatively large instances, based on integer programming. An additional difficulty compared to the TSP is the fact that only a subset of subtour constraints is valid, depending not on combinatorics, but on geometry. We overcome this difficulty by establishing and exploiting geometric properties. This allows us to reliably solve a wide range of benchmark instances with up to 600 vertices within reasonable time on a standard machine. We also show that restricting the set of connections between points to edges of the Delaunay triangulation yields results that are on average within 0.5% of the optimum for large classes of benchmark instances.

U2 - 10.20382/jocg.v8i1a13

DO - 10.20382/jocg.v8i1a13

M3 - Article

VL - 8

SP - 340

EP - 365

JO - Journal of Computational Geometry

JF - Journal of Computational Geometry

SN - 1920-180X

IS - 1

ER -