Computation of Hopkins' 3-circle integrals using Zernike expansions

Research output: Contribution to journalArticleAcademicpeer-review

5 Citations (Scopus)
78 Downloads (Pure)

Abstract

The integrals occurring in optical diffraction theory under conditions of partial coherence have the form of an incomplete autocorrelation integral of the pupil function of the optical system. The incompleteness is embodied by a spatial coherence function of limited extent. In the case of circular optical systems and coherence functions supported by a disk, this gives rise to Hopkins’ 3-circle integrals. In this paper, a computation scheme for these integrals (initially with coherence functions that are constant on their disks) is proposed where the required integral is expressed semi-analytically in the Zernike expansion coefficients of the pupil function. To this end, the Zernike expansion coefficients of a shifted pupil function restricted to the coherence disk are expressed in terms of the pupil function’s Zernike expansion coefficients. Next, the required integral is expressed as an infinite series involving two sets of restricted Zernike coefficients using Parseval’s theorem for orthogonal series. The computation method is extended to the case of coherence functions that are not necessarily constant on their supporting disks by using a result on linearization of the product of two Zernike circle polynomials involving Wigner coefficients.
Original languageEnglish
Pages (from-to)11059-1/6
Number of pages6
JournalJournal of the European Optical Society: Rapid Publications
Volume6
DOIs
Publication statusPublished - 2011

Fingerprint Dive into the research topics of 'Computation of Hopkins' 3-circle integrals using Zernike expansions'. Together they form a unique fingerprint.

Cite this