Composability and Predictability for Independent Application Development, Verification and Execution

K.B. Akesson, A.M. Molnos, M.A. Hansson, J.A. Ambrose, K.G.W. Goossens

Research output: Chapter in Book/Report/Conference proceedingChapterAcademic

28 Citations (Scopus)
116 Downloads (Pure)

Abstract

System-on-chip (SOC) design gets increasingly complex, as a growing number of applications are integrated in modern systems. Some of these applications have real-time requirements, such as a minimum throughput or a maximum latency. To reduce cost, system resources are shared between applications, making their timing behavior inter-dependent. Real-time requirements must hence be verified for all possible combinations of concurrently executing applications, which is not feasible with commonly used simulation-based techniques. This chapter addresses this problem using two complexity-reducing concepts: composability and predictability. Applications in a composable system are completely isolated and cannot affect each other’s behaviors, enabling them to be independently verified. Predictable systems, on the other hand, provide lower bounds on performance, allowing applications to be verified using formal performance analysis. Five techniques to achieve composability and/or predictability in SOC resources are presented and we explain their implementation for processors, interconnect, and memories in our platform.
Original languageEnglish
Title of host publicationMultiprocessor System-on-Chip: Hardware Design and Tool Integration
EditorsM. Huebner, J. Becker
Place of PublicationBerlin
PublisherSpringer
Pages25-56-
Number of pages32
ISBN (Print)978-1-4419-6460-1
DOIs
Publication statusPublished - 2010

Fingerprint Dive into the research topics of 'Composability and Predictability for Independent Application Development, Verification and Execution'. Together they form a unique fingerprint.

Cite this