Complete resource pooling of a load balancing policy for a network of battery swapping stations

Fiona Sloothaak, James R. Cruise, Seva Shneer, Maria Vlasiou, Bert Zwart

Research output: Contribution to journalArticleAcademic

27 Downloads (Pure)

Abstract

To reduce carbon emission in the transportation sector, there is currently a steady move taking place to an electrified transportation system. This brings about various issues for which a promising solution involves the construction and operation of a battery swapping infrastructure rather than in-vehicle charging of batteries. In this paper, we study a closed Markovian queueing network that allows for spare batteries under a dynamic arrival policy. We propose a provisioning rule for the capacity levels and show that these lead to near-optimal resource utilization, while guaranteeing good quality-of-service levels for Electric Vehicle (EV) users. Key in the derivations is to prove a state-space collapse result, which in turn implies that performance levels are as good as if there would have been a single station with an aggregated number of resources, thus achieving complete resource pooling.
Original languageEnglish
Article number1902.04392
Number of pages60
JournalarXiv.org,e-Print Archive, Mathematics
Publication statusPublished - 12 Feb 2019

Fingerprint Dive into the research topics of 'Complete resource pooling of a load balancing policy for a network of battery swapping stations'. Together they form a unique fingerprint.

Cite this