TY - JOUR
T1 - Comparison of neural closure models for discretised PDEs
AU - Melchers, Hugo A.
AU - Crommelin, Daan
AU - Koren, Barry
AU - Menkovski, V.
AU - Sanderse, Benjamin
PY - 2023/8/1
Y1 - 2023/8/1
N2 - Neural closure models have recently been proposed as a method for efficiently approximating small scales in multiscale systems with neural networks. The choice of loss function and associated training procedure has a large effect on the accuracy and stability of the resulting neural closure model. In this work, we systematically compare three distinct procedures: “derivative fitting”, “trajectory fitting” with discretise-then-optimise, and “trajectory fitting” with optimise-then-discretise. Derivative fitting is conceptually the simplest and computationally the most efficient approach and is found to perform reasonably well on one of the test problems (Kuramoto-Sivashinsky) but poorly on the other (Burgers). Trajectory fitting is computationally more expensive but is more robust and is therefore the preferred approach. Of the two trajectory fitting procedures, the discretise-then-optimise approach produces more accurate models than the optimise-then-discretise approach. While the optimise-then-discretise approach can still produce accurate models, care must be taken in choosing the length of the trajectories used for training, in order to train the models on long-term behaviour while still producing reasonably accurate gradients during training. Two existing theorems are interpreted in a novel way that gives insight into the long-term accuracy of a neural closure model based on how accurate it is in the short term.
AB - Neural closure models have recently been proposed as a method for efficiently approximating small scales in multiscale systems with neural networks. The choice of loss function and associated training procedure has a large effect on the accuracy and stability of the resulting neural closure model. In this work, we systematically compare three distinct procedures: “derivative fitting”, “trajectory fitting” with discretise-then-optimise, and “trajectory fitting” with optimise-then-discretise. Derivative fitting is conceptually the simplest and computationally the most efficient approach and is found to perform reasonably well on one of the test problems (Kuramoto-Sivashinsky) but poorly on the other (Burgers). Trajectory fitting is computationally more expensive but is more robust and is therefore the preferred approach. Of the two trajectory fitting procedures, the discretise-then-optimise approach produces more accurate models than the optimise-then-discretise approach. While the optimise-then-discretise approach can still produce accurate models, care must be taken in choosing the length of the trajectories used for training, in order to train the models on long-term behaviour while still producing reasonably accurate gradients during training. Two existing theorems are interpreted in a novel way that gives insight into the long-term accuracy of a neural closure model based on how accurate it is in the short term.
UR - https://arxiv.org/abs/2210.14675
UR - https://github.com/HugoMelchers/neural-closure-models
U2 - 10.48550/arXiv.2210.14675
DO - 10.48550/arXiv.2210.14675
M3 - Article
SN - 0898-1221
VL - 143
SP - 94
EP - 107
JO - Computers and Mathematics with Applications
JF - Computers and Mathematics with Applications
ER -