Comparison of neural closure models for discretised PDEs

Hugo A. Melchers, Daan Crommelin, Barry Koren, V. Menkovski, Benjamin Sanderse (Corresponding author)

Research output: Contribution to journalArticleAcademicpeer-review

4 Citations (Scopus)
73 Downloads (Pure)

Abstract

Neural closure models have recently been proposed as a method for efficiently approximating small scales in multiscale systems with neural networks. The choice of loss function and associated training procedure has a large effect on the accuracy and stability of the resulting neural closure model. In this work, we systematically compare three distinct procedures: “derivative fitting”, “trajectory fitting” with discretise-then-optimise, and “trajectory fitting” with optimise-then-discretise. Derivative fitting is conceptually the simplest and computationally the most efficient approach and is found to perform reasonably well on one of the test problems (Kuramoto-Sivashinsky) but poorly on the other (Burgers). Trajectory fitting is computationally more expensive but is more robust and is therefore the preferred approach. Of the two trajectory fitting procedures, the discretise-then-optimise approach produces more accurate models than the optimise-then-discretise approach. While the optimise-then-discretise approach can still produce accurate models, care must be taken in choosing the length of the trajectories used for training, in order to train the models on long-term behaviour while still producing reasonably accurate gradients during training. Two existing theorems are interpreted in a novel way that gives insight into the long-term accuracy of a neural closure model based on how accurate it is in the short term.
Original languageEnglish
Pages (from-to)94-107
Number of pages14
JournalComputers and Mathematics with Applications
Volume143
DOIs
Publication statusPublished - 1 Aug 2023

Funding

This publication is part of the project “Discretize first, reduce next” (with project number VI.Vidi.193.105 ) of the research programme Vidi which is (partly) financed by the Dutch Research Council (NWO).

FundersFunder number
Nederlandse Organisatie voor Wetenschappelijk Onderzoek

    Keywords

    • Closure model
    • Multiscale modelling
    • Neural ODE
    • Neural networks
    • Ordinary differential equations
    • Partial differential equations

    Fingerprint

    Dive into the research topics of 'Comparison of neural closure models for discretised PDEs'. Together they form a unique fingerprint.

    Cite this