TY - JOUR
T1 - Combining multi agent paradigm and memetic computing for personalized and adaptive learning experiences
AU - Acampora, G.
AU - Gaeta, M.
AU - Loia, V.
PY - 2011
Y1 - 2011
N2 - Learning is a critical support mechanism for industrial and academic organizations to enhance the skills of employees and students and, consequently, the overall competitiveness in the new economy. The remarkable velocity and volatility of modern knowledge require novel learning methods offering additional features as efficiency, task relevance and personalization. Computational Intelligence methodologies can support e-Learning system designers in two different aspects: (1) they represent the most suitable solution able to support learning content and activities, personalized to specific needs and influenced by specific preferences of the learner and (2) they assist designers with computationally efficient methods to develop "in time" e-Learning environments. This article attempts to achieve both results by exploiting an ontological representations of learning environment and memetic approach of optimization, integrated into a cooperative distributed problem solving framework. This synergy enables multi-island memetic approach managing a collection of models and processes for adapting an e-Learning system to the learner expectations and to formulate objectives in an effective and dynamic intelligent way. More precisely, our proposal exploits ontological representations of learning environment and a memetic distributed problem-solving approach to generate the best learning presentation and, at the same time, minimize the computational efforts necessary to compute optimal learning experiences.
AB - Learning is a critical support mechanism for industrial and academic organizations to enhance the skills of employees and students and, consequently, the overall competitiveness in the new economy. The remarkable velocity and volatility of modern knowledge require novel learning methods offering additional features as efficiency, task relevance and personalization. Computational Intelligence methodologies can support e-Learning system designers in two different aspects: (1) they represent the most suitable solution able to support learning content and activities, personalized to specific needs and influenced by specific preferences of the learner and (2) they assist designers with computationally efficient methods to develop "in time" e-Learning environments. This article attempts to achieve both results by exploiting an ontological representations of learning environment and memetic approach of optimization, integrated into a cooperative distributed problem solving framework. This synergy enables multi-island memetic approach managing a collection of models and processes for adapting an e-Learning system to the learner expectations and to formulate objectives in an effective and dynamic intelligent way. More precisely, our proposal exploits ontological representations of learning environment and a memetic distributed problem-solving approach to generate the best learning presentation and, at the same time, minimize the computational efforts necessary to compute optimal learning experiences.
U2 - 10.1111/j.1467-8640.2010.00367.x
DO - 10.1111/j.1467-8640.2010.00367.x
M3 - Article
SN - 0824-7935
VL - 27
SP - 141
EP - 165
JO - Computational Intelligence
JF - Computational Intelligence
IS - 2
ER -