Coalgebraic weak bisimulation for action-type systems

A. Sokolova, E.P. Vink, de, H. Woracek

Research output: Contribution to journalArticleAcademicpeer-review

73 Downloads (Pure)

Abstract

We propose a coalgebraic definition of weak bisimulation for classes of coalgebras obtained from bifunctors in the category Set. Weak bisimilarity for a system is obtained as strong bisimilarity of a transformed system. The particular transformation consists of two steps: First, the behavior on actions is lifted to behavior on finite words. Second, the behavior on finite words is taken modulo the hiding of internal or invisible actions, yielding behavior on equivalence classes of words closed under silent steps. The coalgebraic definition is validated by two correspondence results: one for the classical notion of weak bisimulation of Milner, another for the notion of weak bisimulation for generative probabilistic transition systems as advocated by Baier and Hermanns.
Original languageEnglish
Pages (from-to)93-144
Number of pages52
JournalScientific Annals of Computer Science
Volume19
DOIs
Publication statusPublished - 2009

Fingerprint Dive into the research topics of 'Coalgebraic weak bisimulation for action-type systems'. Together they form a unique fingerprint.

  • Cite this