Abstract
In this paper, a design method for the co-design and integration of a CMOS rectifier and small loop antenna is described. In order to improve the sensitivity, the antenna-rectifier interface is analyzed as it plays a crucial role in the co-design optimization. Subsequently, a 5-stage cross-connected differential rectifier with a 7-bit binary-weighted capacitor bank is designed and fabricated in standard 90 nm CMOS technology. The rectifier is brought at resonance with a high-Q loop antenna by means of a control loop that compensates for any variation at the antenna-rectifier interface and passively boosts the antenna voltage to enhance the sensitivity. A complementary MOS diode is proposed to improve the harvester's ability to store and hold energy over a long period of time during which there is insufficient power for rectification. The chip is ESD protected and integrated on a compact loop antenna. Measurements in an anechoic chamber at 868 MHz demonstrate a -27 dBm sensitivity for 1 V output across a capacitive load and 27 meter range for a 1.78 W RF source in an office corridor. The end-to-end power conversion efficiency equals 40% at -17 dBm.
Original language | English |
---|---|
Pages (from-to) | 622-634 |
Number of pages | 13 |
Journal | IEEE Journal of Solid-State Circuits |
Volume | 49 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2014 |