Chemisorption of H2O and CO2 on hydrotalcites for sorptionenhanced water-gas-shift processes

K.T. Coenen, F. Gallucci, P. Cobden, E. van Dijk, E.J.M. Hensen, M. van Sint Annaland

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

Abstract

Thermogravimetric analysis and breakthrough experiments in a packed bed reactor were used to validate a developed adsorption model to describe the cyclic working capacity of CO¬2 and H2O on a potassium-promoted hydrotalcite, a very promising adsorbent for sorption-enhanced water-gas-shift applications. Four different adsorption sites (two sites for CO2, one site for H2O and one equilibrium site for both species) were required to describe the mass changes observed in the TGA experiments. The TGA experiments were carried out at operating temperatures between 300 and 500 °C, while the total pressure in the reactor was kept at atmospheric pressure. Cyclic working capacities for different sites and the influence of the operating conditions on the cyclic working capacity were studied using the developed model. A higher operating temperature leads to a significant increase in the cyclic working capacity of the sorbent for CO2 attributed to the increase in the desorption kinetics for CO2. The model was successfully validated with experiments in a packed bed reactor at different operating temperatures.

Original languageEnglish
Title of host publication13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14-18 November 2016, Lausanne, Switzerland
Publication statusPublished - 17 Oct 2016

Keywords

  • Hydrotalcite
  • CO2 capture
  • model for cyclic working capacity

Fingerprint

Dive into the research topics of 'Chemisorption of H2O and CO2 on hydrotalcites for sorptionenhanced water-gas-shift processes'. Together they form a unique fingerprint.

Cite this