TY - JOUR
T1 - Characterization of waveguide photonic crystal reflectors on indium phosphide membranes
AU - Reniers, Sander F.G.
AU - Wang, Yi
AU - Williams, Kevin A.
AU - Van Der Tol, Jos J.G.M.
AU - Jiao, Yuqing
PY - 2019/12
Y1 - 2019/12
N2 - We present waveguide photonic crystal reflectors on the InP-membrane-on-silicon (IMOS) platform, and a method to accurately measure the reflectivity of those reflectors. The photonic crystal holes are patterned on a waveguide using electron-beam lithography and etched through the waveguiding layer to create a broadband distributed Bragg reflector. We show simulations of these reflectors and experimental results of fabricated devices, both showing a high, free-to-choose reflectivity, and high quality factor Fabry-Pérot cavities. We experimentally show reflectivities higher than 95% for the reflectors and a quality factor as high as 15,911±511 for a Fabry-Pérot cavity, using reflectors with a length of only 4 microns. For the first time, to our knowledge, two methods for measuring the reflectivity are used for characterization of on-chip reflectors to accurately determine the reflection. The first method is based on analysis of the transmission through a Fabry-Pérot cavity, the second is based on a direct four-port measurement of the reflector. A systematic error is made in both methods, resulting in an upper and lower boundary for the actual reflection coefficient.
AB - We present waveguide photonic crystal reflectors on the InP-membrane-on-silicon (IMOS) platform, and a method to accurately measure the reflectivity of those reflectors. The photonic crystal holes are patterned on a waveguide using electron-beam lithography and etched through the waveguiding layer to create a broadband distributed Bragg reflector. We show simulations of these reflectors and experimental results of fabricated devices, both showing a high, free-to-choose reflectivity, and high quality factor Fabry-Pérot cavities. We experimentally show reflectivities higher than 95% for the reflectors and a quality factor as high as 15,911±511 for a Fabry-Pérot cavity, using reflectors with a length of only 4 microns. For the first time, to our knowledge, two methods for measuring the reflectivity are used for characterization of on-chip reflectors to accurately determine the reflection. The first method is based on analysis of the transmission through a Fabry-Pérot cavity, the second is based on a direct four-port measurement of the reflector. A systematic error is made in both methods, resulting in an upper and lower boundary for the actual reflection coefficient.
KW - nanophotonics
KW - photonic crystals
KW - Photonic integrated circuits
UR - http://www.scopus.com/inward/record.url?scp=85077745926&partnerID=8YFLogxK
U2 - 10.1109/JQE.2019.2941578
DO - 10.1109/JQE.2019.2941578
M3 - Article
AN - SCOPUS:85077745926
VL - 55
JO - IEEE Journal of Quantum Electronics
JF - IEEE Journal of Quantum Electronics
SN - 0018-9197
IS - 6
M1 - 8839111
ER -