Characterisation of mechanical behaviour of human skin in vivo

L.F.A. Douven, R. Meijer, C.W.J. Oomens

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

1 Citation (Scopus)
2 Downloads (Pure)

Abstract

Characterization of the biomechanical properties of human skin in vivo is studied both experimentally and by numerical modeling. These properties can be important in the evaluation of skin condition (e.g. aging) as well as skin disorders. In this study the authors focus on the static behavior of the dermis. Important features are stress-strain non-linearity and anisotropy; both are mainly determined by the collagen fiber network present in the dermis. A suitable constitutive model was developed by Lanir (1983). An experimental set-up was developed and used to stretch the skin in vivo. Two pads are attached to the skin which are driven apart during the experiment. The forces and displacements of the pads are measured. A field of markers (6*12) is applied to the skin's surface between the pads. The displacement history of the markers can be determined by image analysis. Both measured forces and displacement histories are input that is used to estimate the unknown material parameters in Lanir's skin model. A numerical simulation model of the experiment (finite element method) is combined with an estimation algorithm (constrained sequential maximum-likelihood approach) to determine estimates of the material parameters. Estimates of the skin parameters could be determined. However the procedure also shows that the skin model applied exhibits modelling errors.
Original languageEnglish
Title of host publicationLaser-tissue interaction XI : photochemical, photothermal, and photomechanical : 22-27 january 2000, San Jose
Place of PublicationBellingham
PublisherSPIE
Pages618-629
Publication statusPublished - 2000

Publication series

NameProceedings of SPIE
Volume3914
ISSN (Print)0277-786X

Fingerprint

Dive into the research topics of 'Characterisation of mechanical behaviour of human skin in vivo'. Together they form a unique fingerprint.

Cite this