Abstract
Sensors in high-precision mechatronic systems require accurate calibration, which is achieved using test beds that, in turn, require even more accurate calibration. The aim of this paper is to develop a cascaded calibration method for position sensors of mechatronic systems while taking into account the variance of the calibration model of the test bed. The developed calibration method employs Gaussian Process regression to obtain a model of the position-dependent sensor inaccuracies by combining prior knowledge of the sensor with data using Bayesian inference. Monte Carlo simulations show that the developed calibration approach leads to significantly higher calibration accuracy when compared to alternative regression techniques, especially when the number of available calibration points is limited. The results indicate that more accurate calibration of position sensors is possible with fewer resources.
Original language | English |
---|---|
Pages (from-to) | 3405-3410 |
Number of pages | 6 |
Journal | IFAC-PapersOnLine |
Volume | 56 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Jul 2023 |
Event | 22nd World Congress of the International Federation of Automatic Control (IFAC 2023 World Congress) - Yokohama, Japan Duration: 9 Jul 2023 → 14 Jul 2023 Conference number: 22 https://www.ifac2023.org/ |
Keywords
- Mechatronic Systems
- Bayesian Methods
- Calibration
- Gaussian process regression
- Bayesian methods
- Gaussian Process regression
- Mechatronic systems