Calibrated Adversarial Training

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

3 Citations (Scopus)
17 Downloads (Pure)

Abstract

Adversarial training is an approach of increasing the robustness of models to adversarial attacks by including adversarial examples in the training set. One major challenge of producing adversarial examples is to contain sufficient perturbation in the example to flip the model's output while not making severe changes in the example's semantical content. Exuberant change in the semantical content could also change the true label of the example. Adding such examples to the training set results in adverse effects. In this paper, we present the Calibrated Adversarial Training, a method that reduces the adverse effects of semantic perturbations in adversarial training. The method produces pixel-level adaptations to the perturbations based on novel calibrated robust error. We provide theoretical analysis on the calibrated robust error and derive an upper bound for it. Our empirical results show a superior performance of the Calibrated Adversarial Training over a number of public datasets.

Original languageEnglish
Title of host publicationProceedings of The 13th Asian Conference on Machine Learning
PublisherPMLR
Pages626-641
Number of pages16
Publication statusPublished - 2021
Event13th Asian Conference on Machine Learning, ACML 2021 - Virtual, Online
Duration: 17 Nov 202119 Nov 2021

Publication series

NameProceedings of Machine Learning Research
Volume157
ISSN (Print)2640-3498

Conference

Conference13th Asian Conference on Machine Learning, ACML 2021
CityVirtual, Online
Period17/11/2119/11/21

Keywords

  • Adversarial examples
  • Adversarial training
  • Generalization

Fingerprint

Dive into the research topics of 'Calibrated Adversarial Training'. Together they form a unique fingerprint.

Cite this