Abstract
We consider an M/PH/1 queue with workload-dependent balking. An arriving customer joins the queue and stays until served if and only if the system workload is no more than a fixed level at the time of his arrival. We begin by considering a fluid model where the buffer content changes at a rate determined by an external stochastic process with finite state space. We derive systems of first-order linear differential equations for the mean and LST (Laplace-Stieltjes Transform) of the busy period in this model and solve them explicitly. We obtain the mean and LST of the busy period in the M/PH/1 queue with workload-dependent balking as a special limiting case of this fluid model. We illustrate the results with numerical examples.
Original language | English |
---|---|
Pages (from-to) | 37-51 |
Journal | Queueing Systems |
Volume | 59 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2008 |