Abstract
Finding a best response policy is a central objective in game theory and multi-agent learning, with modern population-based training approaches employing reinforcement learning algorithms as best-response oracles to improve play against candidate opponents (typically previously learnt policies). We propose Best Response Expert Iteration (BRExIt), which accelerates learning in games by incorporating opponent models into the state-of-the-art learning algorithm Expert Iteration (ExIt). BRExIt aims to (1) improve feature shaping in the apprentice, with a policy head predicting opponent policies as an auxiliary task, and (2) bias opponent moves in planning towards the given or learnt opponent model, to generate apprentice targets that better approximate a best response. In an empirical ablation on BRExIt's algorithmic variants against a set of fixed test agents, we provide statistical evidence that BRExIt learns better performing policies than ExIt. Code available at: https://github.com/Danielhp95/on-opponent-modelling-in-expert-iteration-code. Supplementary material available at https://arxiv.org/abs/2206.00113.
Original language | English |
---|---|
Title of host publication | Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23 |
Editors | Edith Elkind |
Publisher | International Joint Conferences on Artificial Intelligence (IJCAI) |
Pages | 3795-3802 |
Number of pages | 8 |
ISBN (Electronic) | 978-195679203-4 |
Publication status | Published - 2023 |
Event | 32nd International Joint Conference on Artificial Intelligence, IJCAI 2023 - Macao, China Duration: 19 Aug 2023 → 25 Aug 2023 |
Conference
Conference | 32nd International Joint Conference on Artificial Intelligence, IJCAI 2023 |
---|---|
Country/Territory | China |
City | Macao |
Period | 19/08/23 → 25/08/23 |