Bounded-rank tensors are defined in bounded degree

J. Draisma, J. Kuttler

Research output: Contribution to journalArticleAcademicpeer-review

31 Citations (Scopus)

Abstract

Matrices of rank at most k are defined by the vanishing of polynomials of degree k+1 in their entries (namely, their ((k+1)×(k+1))-subdeterminants), regardless of the size of the matrix. We prove a qualitative analogue of this statement for tensors of arbitrary dimension, where matrices correspond to two-dimensional tensors. More specifically, we prove that for each k there exists an upper bound d=d(k) such that tensors of border rank at most k are defined by the vanishing of polynomials of degree at most d, regardless of the dimension of the tensor and regardless of its size in each dimension. Our proof involves passing to an infinite-dimensional limit of tensor powers of a vector space, whose elements we dub infinite-dimensional tensors, and exploiting the symmetries of this limit in crucial ways.
Original languageEnglish
Pages (from-to)35-63
JournalDuke Mathematical Journal
Volume163
Issue number1
DOIs
Publication statusPublished - 2014

Fingerprint Dive into the research topics of 'Bounded-rank tensors are defined in bounded degree'. Together they form a unique fingerprint.

Cite this