TY - BOOK
T1 - Boundary layer thickness effects of the hydrodynamic instability along an impedance wall
AU - Rienstra, S.W.
AU - Darau, M.
PY - 2010
Y1 - 2010
N2 - Abstract: The Ingard-Myers condition, modelling the effect of an impedance wall under a mean fl
ow by assuming a vanishingly thin boundary layer, is known to lead to an ill-posed problem in time-domain. By analysing the stability of a linear-then-constant mean
flow over a mass-spring-damper liner in a 2D incompressible limit, we show that the fl
ow is absolutely unstable for h smaller than a critical hc and convectively unstable or stable otherwise. This critical hc is by nature independent of wave length or frequency and is a property of liner and mean
flow only. An analytical approximation of hc is given, which is complemented by a contourplot covering all parameter values. For an aeronautically relevant example, hc is shown to be extremely small, which explains why this instability has never been observed in industrial practice. A systematically regularised boundary condition, to replace the Ingard-Myers condition, is proposed that retains the effects of a finite h, such that the stability of the approximate problem correctly follows the stability of the real problem.
Keywords: Aeroacoustics, Boundary layer stability, Impedance wall.
AB - Abstract: The Ingard-Myers condition, modelling the effect of an impedance wall under a mean fl
ow by assuming a vanishingly thin boundary layer, is known to lead to an ill-posed problem in time-domain. By analysing the stability of a linear-then-constant mean
flow over a mass-spring-damper liner in a 2D incompressible limit, we show that the fl
ow is absolutely unstable for h smaller than a critical hc and convectively unstable or stable otherwise. This critical hc is by nature independent of wave length or frequency and is a property of liner and mean
flow only. An analytical approximation of hc is given, which is complemented by a contourplot covering all parameter values. For an aeronautically relevant example, hc is shown to be extremely small, which explains why this instability has never been observed in industrial practice. A systematically regularised boundary condition, to replace the Ingard-Myers condition, is proposed that retains the effects of a finite h, such that the stability of the approximate problem correctly follows the stability of the real problem.
Keywords: Aeroacoustics, Boundary layer stability, Impedance wall.
M3 - Report
T3 - CASA-report
BT - Boundary layer thickness effects of the hydrodynamic instability along an impedance wall
PB - Technische Universiteit Eindhoven
CY - Eindhoven
ER -