Blocking sets of the classical unital

A. Blokhuis, A. E. Brouwer, D. Jungnickel, V. Krčadinac, S. Rottey, L. Storme, T. Szonyi, P. Vandendriessche

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)
2 Downloads (Pure)

Abstract

It is known that the classical unital arising from the Hermitian curve in PG(2,9) does not have a 2-coloring without monochromatic lines. Here we show that for q≥4 the Hermitian curve in PG(2,q2) does possess 2-colorings without monochromatic lines. We present general constructions and also prove a lower bound on the size of blocking sets in the classical unital.

Original languageEnglish
Pages (from-to)1-15
Number of pages15
JournalFinite Fields and their Applications
Volume35
DOIs
Publication statusPublished - 1 Sep 2015

Fingerprint Dive into the research topics of 'Blocking sets of the classical unital'. Together they form a unique fingerprint.

Cite this