Abstract
Living organisms are well known for building a wide range of specially designed organic–inorganic hybrid materials such as bone, teeth, and shells, which are highly sophisticated in terms of their adaptation to function. This has inspired physicists, chemists, and materials scientists to mimic such structures and their properties. In this Review we describe how strategies used by nature to build and tune the properties of biominerals have been applied to the synthesis of materials for biomedical, industrial, and technological purposes. Bio-inspired approaches such as molecular templating, supramolecular templating, organized surfaces, and phage display as well as methods to replicate the structure and function of biominerals are discussed. We also show that the application of in situ techniques to study and visualize the bio-inspired materials is of paramount importance to understand, control, and optimize their preparation. Biominerals are synthesized in aqueous media under ambient conditions, and these approaches can lead to materials with a reduced ecological footprint than can traditional methods.
Original language | English |
---|---|
Pages (from-to) | 6582-6596 |
Journal | Angewandte Chemie - International Edition |
Volume | 51 |
Issue number | 27 |
DOIs | |
Publication status | Published - 2012 |
Fingerprint
Dive into the research topics of 'Biomineralization as an Inspiration for materials chemistry'. Together they form a unique fingerprint.Equipment
-
Center for Multiscale Electron Microscopy (CMEM)
Friedrich, H. (Manager), Bransen, M. (Education/research officer), Schmit, P. (Education/research officer), Schreur - Piet, I. (Other) & Spoelstra, A. (Education/research officer)
Physical ChemistryFacility/equipment: Research lab