Bioactivity-guided mapping and navigation of chemical space

S. Renner, W.A.L. Otterlo, van, M.D. Seoane, S. Möcklinghoff, B. Hofmann, S. Wetzel, A. Schuffenhauer, P. Ertl, T.I. Oprea, D. Steinhilber, L. Brunsveld, D. Rauh, H. Waldmann

Research output: Contribution to journalArticleAcademicpeer-review

97 Citations (Scopus)

Abstract

The structure- and chemistry-based hierarchical organization of library scaffolds in tree-like arrangements provides a valid, intuitive means to map and navigate chemical space. We demonstrate that scaffold trees built using bioactivity as the key selection criterion for structural simplification during tree construction allow efficient and intuitive mapping, visualization and navigation of the chemical space defined by a given library, which in turn allows correlation of this chemical space with the investigated bioactivity and further compound design. Brachiation along the branches of such trees from structurally complex to simple scaffolds with retained yet varying bioactivity is feasible at high frequency for the five major pharmaceutically relevant target classes and allows for the identification of new inhibitor types for a given target. We provide proof of principle by identifying new active scaffolds for 5-lipoxygenase and the estrogen receptor ERa.
Original languageEnglish
Pages (from-to)585-592
JournalNature Chemical Biology
Volume5
Issue number8
DOIs
Publication statusPublished - 2009

    Fingerprint

Cite this

Renner, S., Otterlo, van, W. A. L., Seoane, M. D., Möcklinghoff, S., Hofmann, B., Wetzel, S., ... Waldmann, H. (2009). Bioactivity-guided mapping and navigation of chemical space. Nature Chemical Biology, 5(8), 585-592. https://doi.org/10.1038/nchembio.188