Bias-dependent Spin Relaxation in Spin-LED

C.A.C. Bosco

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademic

Abstract

We have investigated the bias-dependent spin relaxation in Cu-CoFe-AlOx-GaAs/AlGaAs-type of Spin-LEDs using microscopic time-resolved magnetization modulation spectroscopy (TIMMS). We observed a significant dependence ofthe electron spin relaxation time (effects as large as 40%) as a function of applied bias. The additional spin relaxation at non-zero bias is found to scale almost linearly with the injection current, and thereby with the current-induced hole density in the active region. This observation is indicative for a dominant contribution by Bir-Aronov-Pikus (BAP) electron-hole spin-flip scattering. In agreement with this observation, a similar BAP-enhanced spin relaxation shows up at increased laser fluence. From spatio-temporal imaging of spin relaxation, scanning pump and probe beams across the 50 µm outside of optical window, we found a significant position dependence (lateral effects) of the spin dynamics.
Original languageEnglish
Title of host publicationVisit to IMEC; Leuven, Belgium (22 nov 2004)
Publication statusPublished - 2004

Fingerprint

Dive into the research topics of 'Bias-dependent Spin Relaxation in Spin-LED'. Together they form a unique fingerprint.

Cite this