Balancing hole and electron conduction in ambipolar split-gate thin-film Transistors

H. Yoo, M. Ghittorelli, D.-K. Lee, E.C.P. Smits, G.H. Gelinck, H. Ahn, H.-K. Lee, F. Torricelli, J.-J. Kim

Research output: Contribution to journalArticleAcademicpeer-review

16 Citations (Scopus)
130 Downloads (Pure)


Complementary organic electronics is a key enabling technology for the development of new applications including smart ubiquitous sensors, wearable electronics, and healthcare devices. High-performance, high-functionality and reliable complementary circuits require n- and p-type thin-film transistors with balanced characteristics. Recent advancements in ambipolar organic transistors in terms of semiconductor and device engineering demonstrate the great potential of this route but, unfortunately, the actual development of ambipolar organic complementary electronics is currently hampered by the uneven electron (n-type) and hole (p-type) conduction in ambipolar organic transistors. Here we show ambipolar organic thin-film transistors with balanced n-type and p-type operation. By manipulating air exposure and vacuum annealing conditions, we show that well-balanced electron and hole transport properties can be easily obtained. The method is used to control hole and electron conductions in split-gate transistors based on a solution-processed donor-acceptor semiconducting polymer. Complementary logic inverters with balanced charging and discharging characteristics are demonstrated. These findings may open up new opportunities for the rational design of complementary electronics based on ambipolar organic transistors.

Original languageEnglish
Article number5015
Number of pages13
JournalScientific Reports
Issue number1
Publication statusPublished - 1 Dec 2017

Fingerprint Dive into the research topics of 'Balancing hole and electron conduction in ambipolar split-gate thin-film Transistors'. Together they form a unique fingerprint.

Cite this